102 research outputs found

    Short Proofs of Tautologies using the Schema of Equivalence

    Get PDF
    It is shown how the schema of equivalence can be used to obtain short proofs of tautologies A , where the depth of proofs is linear in the number of variables in A

    First-order Goedel logics

    Full text link
    First-order Goedel logics are a family of infinite-valued logics where the sets of truth values V are closed subsets of [0, 1] containing both 0 and 1. Different such sets V in general determine different Goedel logics G_V (sets of those formulas which evaluate to 1 in every interpretation into V). It is shown that G_V is axiomatizable iff V is finite, V is uncountable with 0 isolated in V, or every neighborhood of 0 in V is uncountable. Complete axiomatizations for each of these cases are given. The r.e. prenex, negation-free, and existential fragments of all first-order Goedel logics are also characterized.Comment: 37 page

    Algorithmic Structuring of Cut-free Proofs

    Get PDF
    The problem of algorithmic structuring of proofs in the sequent calculi LK and LKB ( LK where blocks of quantifiers can be introduced in one step) is investigated, where a distinction is made between linear proofs and proofs in tree form. In this framework, structuring coincides with the introduction of cuts into a proof. The algorithmic solvability of this problem can be reduced to the question of k-l-compressibility: "Given a proof of length k , and l ≤ k : Is there is a proof of length ≤ l ?" When restricted to proofs with universal or existential cuts, this problem is shown to be (1) undecidable for linear or tree-like LK-proofs (corresponds to the undecidability of second order unification), (2) undecidable for linear LKB-proofs (corresponds to the undecidability of semi-unification), and (3) decidable for tree-like LKB -proofs (corresponds to a decidable subprob- lem of semi-unification)

    Hypersequents and the Proof Theory of Intuitionistic Fuzzy Logic

    Get PDF
    Takeuti and Titani have introduced and investigated a logic they called intuitionistic fuzzy logic. This logic is characterized as the first-order Goedel logic based on the truth value set [0,1]. The logic is known to be axiomatizable, but no deduction system amenable to proof-theoretic, and hence, computational treatment, has been known. Such a system is presented here, based on previous work on hypersequent calculi for propositional Goedel logics by Avron. It is shown that the system is sound and complete, and allows cut-elimination. A question by Takano regarding the eliminability of the Takeuti-Titani density rule is answered affirmatively.Comment: v.2: 15 pages. Final version. (v.1: 15 pages. To appear in Computer Science Logic 2000 Proceedings.

    Compact propositional Gödel logics

    Get PDF
    Entailment in propositional Gödel logics can be defined in a natural way. While all infinite sets of truth values yield the same sets of tautologies, the entailment relations differ. It is shown that there is a rich structure of infinite-valued Gödel logics, only one of which is compact. It is also shown that the compact infinite-valued Gödel logic is the only one which interpolates, and the only one with an r.e. entailment relation

    Approximating Propositional Calculi by Finite-valued Logics

    Get PDF
    The problem of approximating a propositional calculus is to find many-valued logics which are sound for the calculus (i.e., all theorems of the calculus are tautologies) with as few tautologies as possible. This has potential applications for representing (computationally complex) logics used in AI by (computationally easy) many-valued logics. It is investigated how far this method can be carried using (1) one or (2) an infinite sequence of many-valued logics. It is shown that the optimal candidate matrices for (1) can be computed from the calculus

    Elementary Elimination of Prenex Cuts in Disjunction-free Intuitionistic Logic

    Get PDF
    The size of shortest cut-free proofs of first-order formulas in intuitionistic sequent calculus is known to be non-elementary in the worst case in terms of the size of given sequent proofs with cuts of the same formulas. In contrast to that fact, we provide an elementary bound for the size of cut-free proofs for disjunction-free intuitionistic logic for the case where the cut-formulas of the original proof are prenex. Moreover, we establish non-elementary lower bounds for classical disjunction-free proofs with prenex cut-formulas and intuitionistic disjunction-free proofs with non-prenex cut-formulas

    Completeness of a Hypersequent Calculus for Some First-order Gödel Logics with Delta

    Get PDF
    All first-order Gödel logics G_V with globalization operator based on truth value sets V C [0,1] where 0 and 1 lie in the perfect kernel of V are axiomatized by Ciabattoni’s hypersequent calculus HGIF

    Incompleteness of a first-order Gödel logic and some temporal logics of programs

    Get PDF
    It is shown that the infinite-valued first-order Gödel logic G° based on the set of truth values {1/k: k ε w {0}} U {0} is not r.e. The logic G° is the same as that obtained from the Kripke semantics for first-order intuitionistic logic with constant domains and where the order structure of the model is linear. From this, the unaxiomatizability of Kröger's temporal logic of programs (even of the fragment without the nexttime operator O) and of the authors' temporal logic of linear discrete time with gaps follows
    • …
    corecore